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BACKGROUND: Thoracic endovascular aortic repair (TEVAR) and complex endovascular aneurysm repair (EVAR) are complex 
procedures that carry a significant risk of complications. While risk prediction tools can aid in clinical decision making, they 
remain limited. We developed machine learning algorithms to predict outcomes following TEVAR and complex EVAR.

METHODS: The Vascular Quality Initiative database was used to identify patients who underwent elective TEVAR and complex 
EVAR for noninfrarenal aortic aneurysms between 2012 and 2023. We extracted 172 features from the index hospitalization, 
including 93 preoperative (demographic/clinical), 46 intraoperative (procedural), and 33 postoperative (in-hospital course/
complications) variables. The primary outcome was 1-year thoracoabdominal aortic aneurysm life-altering event, defined as 
new permanent dialysis, new permanent paralysis, stroke, or death. The data were split into training (70%) and test (30%) 
sets. We trained 6 machine learning models using preoperative features with 10-fold cross-validation. Model robustness was 
evaluated using calibration plots and Brier scores.

RESULTS: Overall, 10 738 patients underwent TEVAR or complex EVAR, with 1485 (13.8%) experiencing 1-year thoracoabdomi-
nal aortic aneurysm life-altering event. Extreme Gradient Boosting was the best preoperative prediction model, achieving an 
area under the receiver operating characteristic curve of 0.96 (95% CI, 0.95–0.97), compared with 0.70 (95% CI, 0.68–0.72) 
for logistic regression. The Extreme Gradient Boosting model maintained excellent performance at the intra- and postop-
erative stages, with areas under the receiver operating characteristic curves of 0.97 (95% CI, 0.96–0.98) and 0.98 (95% CI, 
0.97–0.99), respectively. Calibration plots indicated good agreement between predicted/observed event probabilities, with 
Brier scores of 0.09 (preoperative), 0.08 (intraoperative), and 0.05 (postoperative).

CONCLUSIONS: Machine learning models can accurately predict 1-year outcomes following TEVAR and complex EVAR, per-
forming better than logistic regression.
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Thoracic endovascular aortic repair (TEVAR) and 
complex endovascular aneurysm repair (EVAR) are 
increasingly common treatment options for nonin-

frarenal abdominal aortic aneurysms (AAAs).1,2 These 
procedures are anatomically and technically challeng-
ing, generally requiring treatment of aortic branch ves-
sels.3 Patel et  al evaluated the risk of complications 
following TEVAR and complex EVAR in the Vascular 
Quality Initiative (VQI) database from 2011 to 2022, 
demonstrating 1-year postprocedural thoracoabdom-
inal aortic aneurysm life-altering event (TALE; compos-
ite of death, dialysis, paralysis, or stroke) rates of up to 
14%.4 Although TALE was originally used to describe 

life-altering events after repair of thoracoabdominal 
aortic aneurysms (TAAAs) by Rocha and colleagues,5 
this composite outcome has been demonstrated to 
be useful in assessing outcomes following TEVAR and 
complex EVAR regardless of the location and extent 
of aortic repair.4 Given the significant death/morbidity 
rates associated with these procedures, careful pre-
operative risk assessment is critical when considering 
patients for aortic intervention, as recommended by 
the Society for Vascular Surgery (SVS) and European 
Society for Vascular Surgery guidelines.6,7

Currently, there are no widely used tools to sup-
port prediction of complications following TEVAR and 
complex EVAR. Most risk prediction models are lim-
ited to the treatment of infrarenal AAA.8 For example, 
the SVS VQI Cardiac Risk Index is limited to predict-
ing in-hospital myocardial infarction after infrarenal 
EVAR and open AAA repair and does not include 
TEVAR or complex EVAR.9 Other tools, such as the 
National Surgical Quality Improvement Program online 
surgical risk calculator, rely on modeling techniques 
that require manual input of clinical variables, which 
can be challenging in busy medical environments.10 
Consequently, there is an important need for the de-
velopment of more effective and user-friendly risk pre-
diction tools for patients being considered for TEVAR 
and complex EVAR.

Machine learning (ML) is a rapidly advancing tech-
nology that enables computers to learn from large data 
sets and make accurate predictions.11 This progress is 
fueled by the surge in electronic data and enhanced 
computational power.12 For instance, Bonde and col-
leagues utilized National Surgical Quality Improvement 
Program data to develop ML algorithms that predict 
perioperative complications across a diverse data set 
of >2900 unique procedures, including abdominal, 
thoracic, neurologic, and extremity interventions.13 
Given the heterogeneity of this data set, more accu-
rate predictions may be achieved by creating ML al-
gorithms tailored specifically for patients undergoing 
TEVAR and complex EVAR using the VQI database, 
a dedicated vascular registry containing highly gran-
ular and procedure-specific variables.14 We previously 
described VQI-based ML algorithms for predicting 
outcomes following infrarenal EVAR15 and open AAA 
repair,16 demonstrating superior performance com-
pared with traditional statistical methods like logistic 
regression. The development of an ML-based risk pre-
diction algorithm for TEVAR and complex EVAR would 
complement these existing algorithms and expand 
clinical guidance for patients being considered for ad-
vanced aortic interventions. In this study, we used VQI 
data to develop ML algorithms aimed at predicting 1-
year TALE following TEVAR and complex EVAR at the 
pre-, intra-, and postoperative stages.

CLINICAL PERSPECTIVE

What Is New?
•	 Using data from 10 738 patients who underwent 

thoracic endovascular aortic repair or complex 
endovascular aneurysm repair in the Vascular 
Quality Initiative database, we developed robust 
machine learning models that accurately pre-
dict 1-year postoperative outcomes.

•	 Our machine learning models achieved an 
area under the receiver operating character-
istic curve of 0.96 for predicting the primary 
outcome of 1-year thoracoabdominal aortic an-
eurysm life-altering events using preoperative 
data, performing better than logistic regression 
(area under the receiver operating characteristic 
curve, 0.70).

What Are the Clinical Implications?
•	 The machine learning tools developed through 

this study have potential for important utility in 
guiding risk-mitigation strategies for patients 
being considered for thoracic endovascular 
aortic repair or complex endovascular aneu-
rysm repair to improve outcomes.

Nonstandard Abbreviations and Acronyms

EVAR	 endovascular aneurysm repair
ML	 machine learning
SVS	 Society for Vascular Surgery
TAAA	 thoracoabdominal aortic aneurysm
TALE	 thoracoabdominal aortic aneurysm 

life-altering event
TEVAR	 thoracic endovascular aortic repair
VQI	 Vascular Quality Initiative
XGBoost	 Extreme Gradient Boosting
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METHODS
Code Availability Statement
The complete code used for model development and 
evaluation in this project is publicly available on GitHub: 
https://​github.​com/​benli​12345/​​TEVAR​-​ML-​VQI.

Data Availability Statement
The data used for this study come from the VQI Database, 
which is maintained by the Society for Vascular Surgery 
Patient Safety Organization. Access and use of the data 
requires approval through an application process avail-
able at https://​www.​vqi.​org/​data-​analy​sis/​.

Study Approval
The SVS Patient Safety Organization Research 
Advisory Council approved this project and supplied 
the anonymized data set. Patient consent was not 
required since the data were sourced from an an-
onymized registry.

Design
This was an ML-based prognostic study with findings 
reported according to the Transparent Reporting of a 
Multivariable Prediction Model for Individual Prognosis 
or Diagnosis + Artificial Intelligence statement.17

Data Set
The VQI database is a clinical registry managed by the 
SVS Patient Safety Organization, aimed at enhanc-
ing vascular care (www.​vqi.​org).14 Vascular surgeons, 
interventionalists, and other specialists from >1000 
academic and community hospitals across the United 
States, Canada, and Singapore contribute demo-
graphic, clinical, and outcomes data on consecutive 
eligible patients on vascular care. These data include 
information from their initial procedure and extends 
up to about 1 year of follow-up.18 Routine audits are 
conducted to compare submitted data with hospital 
claims to ensure accuracy.19

Patient Cohort
All patients who underwent TEVAR and complex 
EVAR for noninfrarenal aortic aneurysms from March 
1, 2012, to October 3, 2023, in the VQI database were 
included. TEVAR included repair of the descending 
thoracic aorta without any renal or visceral vessel in-
corporation (proximal aortic zones 2–5 and distal aor-
tic zones 2–5) and arch repair (proximal aortic zones 
0–1 and distal aortic zones 0–1).4 Complex EVAR in-
cluded repair of juxtarenal, pararenal, and suprarenal 
AAAs and extent IV TAAAs with at least 1 scallop, fen-
estration, branch, or parallel grafting (chimney, snorkel, 

periscope, or sandwich techniques) into a renal or vis-
ceral artery (proximal aortic zones 6–8 and distal aortic 
zones 9–11) and extent I to III TAAAs (proximal aor-
tic zones 2–5 and distal aortic zones 6–11).4 Patients 
who underwent repair for nonaneurysmal pathology 
(ie, dissection, penetrating aortic ulcer, intramural he-
matoma, aortic thrombus, or trauma), presented with 
ruptured or symptomatic aneurysm, required conver-
sion to open repair, or had no reporting of the proxi-
mal or distal landing zones or symptom status were 
excluded. The reason for these exclusion criteria was 
to establish a cohort of patients undergoing elective 
TEVAR and complex EVAR for aneurysmal pathology. 
TEVAR and complex EVAR were combined because 
VQI provides a single registry for these procedures. To 
maximize sample size and event rates critical for ro-
bust ML model training, these procedures were com-
bined for model development. Although this approach 
may increase heterogeneity of the cohort, model per-
formance specific to TEVAR and complex EVAR was 
investigated separately through subgroup analyses to 
determine clinical utility on the basis of procedure type.

Features
Predictive features used in the ML models were cat-
egorized into pre-, intra-, and postoperative variables. 
To leverage the strengths of ML in managing numerous 
input features, all available VQI variables were used to 
enhance predictive performance. Preoperative fea-
tures (n=92) included demographics, comorbidities, 
previous procedures, functional status, investigations 
(hemoglobin, creatinine, cardiac stress test results, 
ejection fraction), medications, and anatomy including 
maximum aortic diameter, aneurysm type, procedure 
type, proximal/distal landing zones, repair technique, 
device type, and planned treatment of branch vessels. 
Intraoperative features (n=46) included type of anes-
thesia, access details, adjunctive procedures, comple-
tion endoleaks, estimated blood loss, intraoperative 
transfusion of packed red blood cells and crystalloids, 
contrast volume, fluoroscopy time, and procedure 
time. Postoperative features (n=33) included in-hospital 
characteristics: time to extubation, need for vasopres-
sor support, spinal drain insertion, access site compli-
cations, myocardial infarction, dysrhythmia, congestive 
heart failure exacerbation, respiratory complication, 
arm or leg ischemia, leg compartment syndrome, 
bowel ischemia, length of stay in the intensive care unit 
and hospital, discharge medications, and nonhome 
discharge. A complete list of features and their defini-
tions can be found in Tables S1 through S3.

Outcomes
The primary outcome was 1-year postprocedural 
TALE (composite of new permanent dialysis, new 
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permanent paralysis, stroke, or death). New perma-
nent dialysis was defined as the need for dialysis at 
1-year of follow-up in a patient who was not dialysis 
dependent before repair.4 New permanent paralysis 
was defined as a lack of palpable muscle contraction 
in at least 1 lower extremity at 1 year of follow-up in 
a patient who did not have paralysis before repair.4 
Stroke was defined as any new motor or sensory 
loss, speech abnormality, or other neurologic defi-
cits related to the right or left cerebral hemisphere 
lasting ≥24 hours.4 Death was defined as all-cause 
death.4 This primary outcome was chosen because 
it is a composite of major complications that have a 
significant impact on patients’ lives following TEVAR 
and complex EVAR and recently described by multiple 
groups for its relevance to these specific procedures.4,5 
Secondary outcomes were individual components of 
the primary outcome. These definitions were based 
on the VQI data dictionary.14

Model Development
We trained 6 different ML models to predict primary 
and secondary outcomes: Extreme Gradient Boosting 
(XGBoost), random forest, Naïve Bayes classifier, ra-
dial basis function support vector machine, multilayer 
perceptron artificial neural network, and logistic re-
gression. These models were chosen on the basis of 
their established efficacy in predicting postoperative 
outcomes using structured data.20–22 Logistic regres-
sion was included as the baseline comparator to evalu-
ate relative model performance because it is the most 
commonly applied statistical technique in traditional 
risk prediction tools.23

The data were randomly divided into training (70%) 
and testing (30%) sets, with the testing data reserved 
exclusively for model evaluation to ensure an unbiased 
assessment. To identify the optimal hyperparameters 
for the models, we applied 10-fold cross-validation 
and grid search to the training data.24,25 Given that 
10-fold cross-validation was applied to the training 
data, a separate validation data set was not required, 
as 10% of the training data were iteratively used for 
model validation.24 Model optimization was performed 
only using the 70% training data with 10-fold cross-
validation. Specifically, the cross-validation procedure 
was used to facilitate model training and hyperparam-
eter tuning within the 70% partition.26 The remaining 
30% of test set data was not used for model training 
nor hyperparameter optimization and was reserved 
only for model evaluation. Given that 70% of the data 
was used for model training and 30% of the data was 
used for model evaluation, all 100% of the data was 
used in determining the final model. Initial analysis 
showed that the primary outcome occurred in 1485 
of 10 738 patients (13.8%) in our cohort. To improve 

class balance, Random Over-Sample Examples was 
applied to training data.27 Random Over-Sample 
Examples uses a smoothed bootstrapping tech-
nique to create new samples from the feature space 
surrounding the minority class, a well-established 
method for enhancing predictive modeling of rare 
events.27 The models were evaluated on the test set 
and ranked on the basis of the primary discriminatory 
metric: the area under the receiver operating char-
acteristic curve (AUROC). We focused on preopera-
tive predictions, as they offer the greatest potential 
for mitigating adverse events by guiding decisions 
on whether to proceed with intervention.28 The best-
performing model was XGBoost, optimized with the 
following hyperparameters: number of rounds=250, 
maximum tree depth=3, learning rate=0.2, γ=0, col-
umn sample by tree=0.7, minimum child weight=1, 
and subsample=1. The process for selecting these 
hyperparameters is detailed in Table S4.

After determining the best-performing ML model at 
the preoperative stage, we continued training the algo-
rithm with intra- and postoperative data. This method 
involved incorporating different sets of features at each 
phase of the perioperative course. At the preoperative 
stage, only preoperative characteristics were used. 
During the intraoperative stage, both pre- and intra-
operative features were included. At the postoperative 
stage, the model used all pre-, intra-, and postoper-
ative features. This approach enables clinicians to 
assess a patient’s risk at various stages of the periop-
erative process, providing valuable insights to inform 
decision making before, during, and after intervention. 
This model training method has been previously used, 
particularly for developing prediction tools for long-
term outcomes.29,30

Statistical Analysis
Pre-, intra-, and postoperative features were summa-
rized as means±SDs or medians (interquartile ranges) 
for continuous variables and as numbers (percent-
ages) for categorical variables. Differences between 
patients with and without 1-year TALE were analyzed 
using independent t tests for continuous variables and 
χ2 tests for categorical variables. To address multiple 
comparisons, we applied the Bonferroni correction to 
determine statistical significance. The primary evalua-
tion metric for the model was AUROC (95% CI), which 
measures discriminatory ability by considering both 
sensitivity and specificity.31 Secondary performance 
metrics included accuracy, sensitivity, specificity, posi-
tive predictive value, and negative predictive value. Risk 
thresholds were determined by calculating Youden’s 
index, which optimizes the sensitivity and specificity 
of a model.32 To evaluate model robustness, we plot-
ted calibration curves and calculated Brier scores, 
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which assess the agreement between predicted and 
observed event probabilities.33 In the final model, fea-
ture importance was assessed by ranking the top 10 
predictors on the basis of variable importance scores 
(gain), which indicate the relative contribution of each 
covariate to the overall prediction.34 Feature selec-
tion was not performed to generate a more parsimo-
nious model because the goal was to maximize the 
predictive performance of a model that could provide 
automated predictions with many clinically relevant 
input features. To evaluate potential model bias, we 
assessed predictive performance across various de-
mographic and clinical subgroups, including age, sex, 
race, ethnicity, rurality, median Area Deprivation Index 
percentile, procedure type, repair type, and prior aortic 
interventions. For both training and test sets, missing 
data were <5%, so we used a complete-case analysis 
approach, considering only nonmissing covariates for 
each patient. This method is appropriate for data sets 
with minimal missing data (<5%) and accurately reflects 
the nature of real-world data, which often include miss-
ing information.35,36 The models were developed with 
consideration of real-world performance as a priority. 
Specifically, no data cleaning was performed, which 
reflects the often variable and incomplete nature of 
real-world clinical data.35,36 Patients lost to follow-up 
were censored. All analyses were performed using R 
version 4.3.1 (R Foundation for Statistical Computing, 
Vienna, Austria).37

RESULTS
Patients, Events, and Follow-Up
From an initial cohort of 18 265 patients who underwent 
TEVAR and complex EVAR for aneurysmal disease in 
the VQI database between 2012 and 2023, a total of 
7527 patients were excluded for the following reasons: 
ruptured aneurysm (n=746), symptomatic aneurysm 
(n=2763), conversion to open repair required (n=170), 
or no reporting of proximal or distal landing zone 
(n=3793) or symptom status (n=55). The final analysis 
included 10 738 patients (mean age, 72.6±9.2 years; 
3363 [31.3%] women) who underwent the following 
elective procedures: complex EVAR for juxtarenal, pa-
rarenal, and suprarenal AAA and extent IV TAAA (4512 
[42.0%]), TEVAR for descending thoracic aortic aneu-
rysm (3014 [28.1%]), extent I to III TAAA repair (2702 
[25.2%]), and arch repair (510 [4.7%]). Repair techniques 
included fenestrated EVAR (8511 [79.3%]), physician 
modified endograft (1588 [14.8%]), and parallel grafting 
(639 [6.0%]). Overall, 1485 (13.8%) experienced 1-year 
TALE. The secondary outcomes occurred in the follow-
ing distribution: new permanent dialysis (n=198 [1.8%]), 
new permanent paralysis (n=107 [1.0%]), stroke (n=197 
[1.8%]), and death (n=1198 [11.2%]). Mean follow-up 

was 15.2±1.2 months. Table S5 summarizes the pre-, 
intra-, and postoperative characteristics of the training 
(n=7517 [70%]) and test set data (n=3221 [30%]) for the 
cohort. The event rate for 1-year TALE was the same in 
both groups: training data (n=1040 [13.8%]) and testing 
data (n=445 [13.8%]).

Preoperative Characteristics
Compared with patients who did not experience a 
primary outcome, those who developed 1-year TALE 
were older and more frequently women, Black indi-
viduals, or Asian individuals. They were more likely to 
be covered by Medicare and to have been transferred 
from another hospital or rehabilitation unit to the in-
tervention center. Additionally, these patients were 
more likely to have hypertension, coronary artery 
disease, congestive heart failure, a history of stroke, 
and chronic obstructive pulmonary disease, and were 
more likely to be classified as American Society of 
Anesthesiologists class ≥4. A greater proportion of 
patients with an event had previous procedures in-
cluding open and endovascular aortic interventions, 
carotid endarterectomy or stent, and bypass and en-
dovascular interventions for peripheral artery disease. 
Functionally, patients with 1-year TALE were more 
likely to live in nursing homes and require assisted 
care. They also had a higher mean creatinine and were 
more likely to have an ejection fraction <50%, yet less 
likely to receive acetylsalicylic acid and angiotensin-
converting enzyme inhibitors or angiotensin II receptor 
blockers preoperatively. Anatomically, patients with an 
outcome had a higher mean maximum aortic diam-
eter and were more likely to have saccular aneurysms 
and planned proximal landing zones proximal to aortic 
zone 4 and undergo extent I to III TAAA or arch repair, 
parallel grafting, and branch treatment of the innomi-
nate, left common carotid, left subclavian, celiac, and 
superior mesenteric arteries (Table 1).

Intraoperative Characteristics
Patients with 1-year TALE were less likely to have anti-
biotics given within 1 hour of intervention and stopped 
within 24 hours of intervention and more likely to re-
quire iliac, arm/neck, and open femoral access and 
intraoperative intravascular ultrasound or transthoracic 
echocardiogram. They were also more likely to have 
an injury to the access artery and type Ia, Ib, and in-
determinant completion endoleaks and less likely to 
have successful technical deployment of the aortic 
device(s). Patients with an event had a higher median 
estimated blood loss, mean number of units of packed 
red blood cells transfused intraoperatively, median 
volume of crystalloids administered intraoperatively, 
median volume of contrast given, median fluoroscopy 
time, and median procedure time (Table 2).
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Table 1.  Preoperative Demographic and Clinical Characteristics of Patients Undergoing Thoracic and Complex 
Endovascular Aortic Aneurysm Repair With and Without 1-Year TALE

Absence of 1-y TALE Presence of 1-y TALE

P value(n=9253) (n=1485)

Demographics

Age, y, mean±SD 72.3±9.3 74.2±8.6 <0.001

Female 2815 (30.4) 548 (36.9) <0.001

BMI, kg/m2, mean±SD 27.8±5.7 26.3±6.1 <0.001

Race

American Indian or Alaskan Native 23 (0.2) 4 (0.3) 0.02

Asian 224 (2.4) 49 (3.3)

Black 885 (9.6) 168 (11.3)

Native Hawaiian or other Pacific Islander 10 (0.1) 4 (0.3)

White 7526 (81.3) 1174 (79.1)

>1 race 33 (0.4) 1 (0.07)

Unknown/other 552 (6.0) 85 (5.7)

Hispanic ethnicity 350 (3.8) 43 (2.9) 0.11

Insurance status

Medicare 4752 (51.4) 873 (58.8) <0.001

Medicaid 283 (3.1) 45 (3.0)

Commercial 2392 (25.9) 321 (21.6)

Military/Veterans Affairs 346 (3.7) 50 (3.4)

Non-US insurance 367 (4.0) 72 (4.9)

Self-pay (uninsured) 63 (0.7) 2 (0.1)

Unknown/other 1050 (11.3) 122 (8.2)

Rural residence 279 (3.0) 49 (3.3) 0.61

Area deprivation index percentile, median (IQR) 52 (30–70) 52 (32–73) 0.78

Transfer status

From another hospital 229 (2.5) 74 (5.0) <0.001

From rehabilitation unit 3 (0.03) 6 (0.4)

Comorbidities

Smoking status

Never 1436 (15.5) 213 (14.3) 0.32

Prior 5062 (54.7) 806 (54.3)

Current 2755 (29.8) 466 (31.4)

Hypertension 8191 (88.5) 1354 (91.2) <0.001

Diabetes 1665 (18.0) 268 (18.0) 0.41

Coronary artery disease 2357 (25.5) 414 (27.9) 0.02

Congestive heart failure 1369 (14.8) 322 (21.7) <0.001

Previous stroke 1105 (11.9) 239 (16.1) <0.001

Chronic obstructive pulmonary disease

Not treated 926 (10.0) 163 (11.0) <0.001

On medications 1979 (21.4) 422 (28.4)

On home oxygen 504 (5.5) 139 (9.4)

Connective tissue disease 247 (2.7) 42 (2.8) 0.73

ASA class

1 13 (0.1) 0 <0.001

2 202 (2.2) 10 (0.7)

3 5283 (57.1) 670 (45.1)

4 3731 (40.3) 802 (54.0)

5 7 (0.08) 0

Not reported 17 (0.02) 3 (0.2)

 (Continued)
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Absence of 1-y TALE Presence of 1-y TALE

P value(n=9253) (n=1485)

Previous procedures

Aortic intervention 2499 (27.0) 488 (32.8) <0.001

Open 1176 (12.7) 220 (14.8)

Endovascular 1089 (11.8) 219 (14.7)

Both 234 (2.5) 49 (3.3)

Open ascending/arch repair 791 (8.6) 115 (7.7) 0.32

Open descending thoracic aortic repair 198 (2.1) 33 (2.2) 0.92

Open suprarenal aortic repair 89 (1.0) 26 (1.8) 0.009

Open infrarenal aortic repair 514 (5.6) 125 (8.4) <0.001

Endovascular ascending/arch repair 162 (1.8) 32 (2.2) 0.33

Endovascular descending thoracic aortic repair 489 (5.3) 86 (5.8) 0.46

Endovascular suprarenal aortic repair 116 (1.3) 26 (1.8) 0.15

Endovascular infrarenal aortic repair 739 (8.0) 168 (11.3) <0.001

Coronary artery bypass graft 1428 (15.5) 238 (16.1) 0.70

Percutaneous coronary intervention 1863 (20.2) 318 (21.4) 0.27

Carotid endarterectomy or stent 375 (4.1) 86 (5.8) 0.01

Bypass for peripheral artery disease 560 (6.1) 111 (7.5) 0.04

Endovascular intervention for peripheral artery disease 583 (6.3) 148 (10.0) <0.001

Major amputation 42 (0.5) 13 (0.9) 0.11

Functional status

Living status

Home 9188 (99.3) 1447 (97.4) <0.001

Nursing home 55 (0.6) 36 (2.4)

Homeless 10 (0.1) 2 (0.1)

Functional status

Full 5821 (62.9) 730 (49.2) <0.001

Light work 2142 (23.1) 388 (26.1)

Self-care 1135 (12.3) 280 (18.9)

Assisted care 148 (1.6) 81 (5.5)

Bed bound 7 (0.08) 6 (0.4)

Investigations

Hemoglobin, g/L, mean±SD 130.0 (22.5) 122.0 (21.2) <0.001

Creatinine, umol/L, mean±SD 100.0 (56.1) 113.0 (62.7) <0.001

Cardiac stress test

Not done 5518 (59.6) 875 (58.9) 0.29

Normal 2976 (32.2) 471 (31.7)

Positive for ischemia 350 (3.8) 71 (4.8)

Positive for infarction 310 (3.4) 47 (3.2)

Positive for ischemia and infarction 99 (1.1) 21 (1.4)

Ejection fraction

<30% 172 (1.9) 53 (3.6) <0.001

30%–50% 1050 (11.3) 224 (15.1)

>50% 5256 (56.8) 867 (58.4)

Not done 2188 (23.6) 251 (16.9)

Unknown 587 (6.3) 90 (6.1)

Medications

Acetylsalicylic acid 6116 (66.1) 944 (63.6) 0.04

P2Y12 antagonist 1364 (14.7) 228 (15.4) 0.07

Statin 6811 (73.6) 1079 (72.7) 0.48

β blocker 5998 (64.8) 1036 (69.8) <0.001
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Absence of 1-y TALE Presence of 1-y TALE

P value(n=9253) (n=1485)

ACE-I/ARB 4396 (47.5) 654 (44.0) 0.03

Anticoagulant 1378 (14.9) 229 (15.4) 0.96

Anatomic characteristics

Maximum aortic diameter, cm, mean±SD 6.0 (1.1) 6.3 (1.3) <0.001

Aneurysm type

Degenerative, fusiform 6776 (73.2) 1002 (67.5) <0.001

Degenerative, saccular 1395 (15.1) 277 (18.7)

Anastomotic 114 (1.2) 19 (1.3)

Intercostal or visceral patch 32 (0.3) 5 (0.3)

Not reported 936 (10.1) 182 (12.3)

Procedure type

Complex EVAR for juxtarenal, pararenal, and 
suprarenal AAA and extent IV TAAA

4023 (43.5) 489 (32.9) <0.001

TEVAR for descending thoracic aortic aneurysm 2608 (28.2) 406 (27.3)

Extent I–III TAAA repair 2235 (24.2) 467 (31.4)

Arch repair 387 (4.2) 123 (8.3)

Proximal landing zone

0 203 (2.2) 55 (3.7) <0.001

1 184 (2.0) 68 (4.6)

2 1024 (11.1) 187 (12.6)

3 1386 (15.0) 263 (17.7)

4 1042 (11.3) 199 (13.4)

5 1391 (15.0) 224 (15.1)

6 808 (8.7) 113 (7.6)

7 1833 (19.8) 221 (14.9)

8 1382 (14.9) 155 (10.4)

Distal landing zone

0 9 (0.1) 1 (0.07) <0.001

1 4 (0.04) 0

2 16 (0.2) 9 (0.6)

3 159 (1.7) 24 (1.6)

4 692 (7.5) 134 (9.0)

5 2072 (22.4) 351 (23.6)

6 258 (2.8) 76 (5.1)

7 111 (1.2) 20 (1.4)

8 169 (1.8) 41 (2.8)

9 2086 (22.5) 315 (21.2)

10 3549 (38.4) 488 (32.9)

11 128 (1.4) 26 (1.8)

Repair technique

Fenestrated EVAR 7355 (79.5) 1156 (77.8) <0.001

Physician modified endograft 1396 (15.1) 192 (12.9)

Parallel grafting* 502 (5.4) 137 (9.2)

Device type

Off-the-shelf 5447 (58.9) 954 (64.2) <0.001

Custom designed by manufacturer 2410 (26.0) 339 (22.8)

Physician modified 1396 (15.1) 192 (12.9)

Aortic branches treated†

Innominate 279 (3.0) 74 (5.0) <0.001

Left common carotid 487 (5.3) 147 (9.9) <0.001

Table 1.  Continued
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Postoperative Characteristics
A greater proportion of patients with 1-year TALE were 
extubated >12 hours after intervention, required va-
sopressor support, and had a spinal drain inserted. 
They were also more likely to experience in-hospital 
complications such as access site hematoma, occlu-
sion, and infection, myocardial infarction, dysrhyth-
mia, congestive heart failure exacerbation, respiratory 
complication, arm ischemia, leg ischemia, leg com-
partment syndrome, and bowel ischemia. Patients 
with an event had a longer median length of stay in 
the intensive care unit and total hospital length of stay 
and were more likely to have a nonhome discharge. 
Despite these complications, they were less likely to 
receive acetylsalicylic acid, P2Y12 antagonists, statins, 
angiotensin-converting enzyme inhibitors/angioten-
sin II receptor blockers, and β blockers at discharge 
(Table 3).

Model Performance
Among the 6 ML models evaluated at the preopera-
tive stage using test set data, XGBoost demonstrated 
the best performance in predicting 1-year TALE, with 
an AUROC of 0.96 (95% CI, 0.95–0.97). In compari-
son, the AUROCs for the other models were as follows: 
random forest (0.95 [95% CI, 0.94–0.96]), Naïve Bayes 
(0.88 [95% CI, 0.87–0.90]), radial basis function sup-
port vector machine (0.84 [95% CI, 0.83–0.86]), mul-
tilayer perceptron artificial neural network (0.80 [95% 
CI, 0.78–0.82]), and logistic regression (0.70 [95% CI, 
0.68–0.72]). The secondary performance metrics for 
XGBoost were the following: accuracy, 0.89 (95% CI, 
0.88–0.90); sensitivity, 0.89; specificity, 0.89; positive 
predictive value, 0.90; and negative predictive value, 

0.89. A summary of model performance results is pro-
vided in Table 4.
We further refined the XGBoost model by incorporat-
ing intra- and postoperative data. This addition mar-
ginally enhanced performance, achieving AUROCs of 
0.97 (95% CI, 0.96–0.98) for intraoperative data and 
0.98 (95% CI, 0.97–0.99) for postoperative data. The 
ROC curves are shown in Figure 1. Calibration plots 
in Figure  2A through 2C illustrate good agreement 
between predicted and observed event probabilities, 
with Brier scores of 0.09 for preoperative, 0.08 for in-
traoperative, and 0.05 for postoperative data. XGBoost 
also predicted individual components of the primary 
outcome with AUROC ranges of 0.94 to 0.96 (preop-
erative), 0.95 to 0.97 (intraoperative), and 0.97 to 0.98 
(postoperative) (Table 5).

The top 10 predictors of 1-year TALE in the final 
XGBoost model included 7 preoperative features 
(proximal landing zone, functional status, procedure 
type [arch repair and extent I–III TAAA repair], chronic 
obstructive pulmonary disease, previous stroke, con-
gestive heart failure, and prior aortic intervention), 
1 intraoperative feature (total procedure time), and 2 
postoperative features (nonhome discharge and ace-
tylsalicylic acid on discharge) (Figure 3).

Subgroup Analysis
Model performance remained robust across various 
demographic and clinical subgroups, including age, 
sex, race, ethnicity, rurality, median Area Deprivation 
Index percentile, procedure type, repair type, and prior 
aortic interventions. AUROCs ranged from 0.95 to 
0.97, with no significant differences observed between 
majority and minority groups (Figures S1 through S9).

Absence of 1-y TALE Presence of 1-y TALE

P value(n=9253) (n=1485)

Left subclavian 1505 (16.3) 328 (22.1) <0.001

Celiac 3574 (38.6) 711 (47.9) <0.001

Superior mesenteric 5142 (55.6) 877 (59.1) 0.01

Right renal 6156 (66.5) 977 (65.8) 0.60

Left renal 6156 (66.5) 977 (65.8) 0.60

Right common iliac 4178 (45.2) 618 (41.6) 0.01

Left common iliac 3748 (40.5) 546 (36.8) 0.007

Values are reported as n (%) unless otherwise indicated. AAA indicates abdominal aortic aneurysm; ACE-I, angiotensin converting enzyme inhibitor; ARB, 
angiotensin II receptor blocker; ASA, American Society of Anesthesiologists; BMI, body mass index; EVAR, endovascular aneurysm repair; IQR, interquartile 
range; TAAA, thoracoabdominal aortic aneurysm; TALE, thoracoabdominal aortic aneurysm life-altering event; and TEVAR, thoracic endovascular aortic repair.

Other race indicates a patient’s self-reported race other than the following: American Indian or Alaskan Native, Asian, Black, Native Hawaiian or other Pacific 
Islander, or White.

*Parallel grafting includes chimney, snorkel, periscope, and sandwich configurations.
†Branch treatment includes coverage, occlusion (ie, coil/plug), stent, stent-graft, chimney, scallop, fenestration, fenestration branch, side-arm branch, 

surgical bypass, thromboembolectomy, or iliac device.
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DISCUSSION
Summary of Findings
We used data from a large clinical registry (VQI) con-
sisting of 10 738 patients who underwent elective 
TEVAR or complex EVAR for noninfrarenal aortic an-
eurysms to develop ML models that accurately predict 
1-year postprocedural TALE with AUROC’s exceeding 
0.90. Several key findings emerged from our study. 
First, patients who develop adverse events following 
TEVAR or complex EVAR are a high-risk population 
with predictive features at the pre-, intra-, and postop-
erative stages. ML modeling enabled us to evaluate the 
cumulative impact of these factors on the risk of com-
plications. Second, we assessed 6 ML models and 
found that XGBoost achieved the best performance. 
This algorithm demonstrated excellent discrimination 
and calibration throughout the pre-, intra-, and post-
operative stages and maintained robust predictive 
performance across various demographic and clinical 
subpopulations. Third, while intra- and postoperative 
factors contributed to long-term risk, most of the top 10 
predictors for 1-year TALE were preoperative features. 
This underscores the potential for our risk prediction 

Table 2.  Intraoperative Characteristics of Patients 
Undergoing Thoracic and Complex Endovascular Aortic 
Aneurysm Repair With and Without 1-Year TALE

Absence of 
1-y TALE

Presence of 
1-y TALE

P value(n=9253) (n=1485)

Anesthesia

Local 132 (1.4) 25 (1.7) 0.44

Regional 49 (0.5) 11 (0.7)

General 9072 (98.0) 1449 (97.6)

Antibiotics given within 1 h 
of intervention

8693 (93.9) 1391 (93.7) 0.05

Antibiotics stopped within 
24 h of intervention

8455 (91.4) 1313 (88.4) <0.001

Right-sided access

None 822 (8.9) 152 (10.2) <0.001

Percutaneous femoral 6372 (68.9) 905 (60.9)

Open femoral 1999 (21.6) 403 (27.1)

Iliac 60 (0.6) 25 (1.7)

Left-sided access

None 1971 (21.3) 381 (25.7) <0.001

Percutaneous femoral 5762 (62.3) 798 (53.7)

Open femoral 1475 (15.9) 294 (19.8)

Iliac 45 (0.5) 12 (0.8)

Arm or neck access

None 7057 (76.3) 971 (65.4) <0.001

For branch treatment 1350 (14.6) 328 (22.1)

For femoral–brachial 
wire

399 (4.3) 78 (5.3)

For both 447 (4.8) 108 (7.3)

Arm or neck access location

None 7057 (76.3) 971 (65.4) <0.001

Right arm 228 (2.5) 46 (3.1)

Left arm 1018 (11.0) 200 (13.5)

Right axillary 180 (2.0) 56 (3.8)

Left axillary 538 (5.8) 144 (9.7)

Right carotid 12 (0.1) 3 (0.2)

Left carotid 137 (1.5) 27 (1.8)

Multiple 83 (0.9) 38 (2.6)

Intravascular ultrasound or transthoracic echocardiogram

None 6814 (73.6) 1028 (69.2) <0.001

Intravascular ultrasound 2070 (22.4) 366 (24.6)

Transthoracic 
echocardiogram

201 (2.2) 61 (4.1)

Both 168 (1.8) 30 (2.0)

Injury to access artery* 444 (4.8) 148 (10.0) <0.001

Technical success of 
aortic device deployment†

8901 (96.2) 1411 (95.0) 0.04

Completion endoleak

Type Ia 279 (3.0) 61 (4.1) 0.03

Type Ib 151 (1.6) 37 (2.5) 0.03

Type Ic‡ 63 (0.7) 17 (1.1) 0.08

 (Continued)

Absence of 
1-y TALE

Presence of 
1-y TALE

P value(n=9253) (n=1485)

Type II 1008 (10.9) 127 (8.6) 0.007

Type III 248 (2.7) 32 (2.2) 0.28

Type IV 110 (1.2) 16 (1.1) 0.81

Indeterminate 292 (3.2) 67 (4.5) 0.009

Estimated blood loss, mL, 
median (IQR)

150 
(50–300)

250 
(100–500)

<0.001

Intraoperative transfusion 
of packed red blood cells, 
units, mean±SD

0.3±0.1 1.6±0.4 <0.001

Intraoperative 
administration of 
crystalloids, mL, median 
(IQR)

1843 
(1250–2500)

2000 
(1300–3000)

<0.001

Total contrast volume, mL, 
median (IQR)

107 
(72–150)

112 (75–164) <0.001

Total fluoroscopy time, 
min, median (IQR)

41.0 
(20.8–68.0)

42,2 
(21.5–77.8)

<0.001

Total procedure time, min, 
median (IQR)

185 
(120–260)

226 
(135–320)

<0.001

Values are reported as n (%) unless otherwise indicated. IQR indicates 
interquartile range; and TALE, thoracoabdominal aortic aneurysm life-
altering event.

*Includes dissection, thromboembolism, pseudoaneurysm, and stenosis.
†Successful delivery to intended implantation site with absence of 

device deformations (kinks, stent eversion, maldeployment, or misaligned 
deployment) and inadvertent covering of aortic branch vessels followed by 
successful withdrawal of delivery system.

‡Type 1c endoleak at a fenestration, branch end point, or branch occluding 
plug/coil.
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tool to enhance patient selection and optimize preop-
erative care. Overall, these models may offer valuable 
support for clinical decision making throughout the 
perioperative period, facilitating individualized risk as-
sessment and management.

Comparison With Existing Literature
Bertges et  al developed the VQI Cardiac Risk Index 
to predict in-hospital myocardial infarction in patients 
undergoing major vascular procedures including infra-
renal EVAR, open AAA repair, lower-extremity bypass, 
and carotid endarterectomy.9 Using logistic regression, 
their model achieved an AUROC of 0.75.9 Importantly, 
TEVAR and complex EVAR were not included in their 
model.9 More recently, Naazie et al developed a logis-
tic regression model using VQI data from 2014 to 2020 
consisting of 2141 patients who underwent TEVAR, 
achieving an AUROC of 0.75 for predicting the 30-day 
mortality rate.38 Applying ML techniques to a more 
up-to-date cohort exclusively composed of patients 
undergoing TEVAR and complex EVAR, we achieved 
better performance with AUROCs >0.90 for predicting 
1-year TALE, a longer-term and more clinically relevant 
procedure-specific outcome.

Bonde et  al (2021) developed ML models using 
a cohort of National Surgical Quality Improvement 
Program patients undergoing >2900 different proce-
dures to predict perioperative complications, achieving 
AUROCs of 0.85 to 0.88.13 Given that patients under-
going TEVAR and complex EVAR represent a unique 
population generally with vascular comorbidities, the 
applicability of general risk prediction tools to these pa-
tients may be limited.39 By developing ML algorithms 
specific to patients undergoing TEVAR and complex 
EVAR, we achieved AUROCs >0.90. Therefore, there is 
value in building procedure-specific ML models, which 

Table 3.  Postoperative In-Hospital Characteristics and 
Complications of Patients Undergoing Thoracic and 
Complex Endovascular Aortic Aneurysm Repair With and 
Without 1-Year TALE

Absence of 1-y 
TALE

Presence of 
1-y TALE

P value(n=9253) (n=1485)

Time to extubation after intervention, h

In operating room 8323 (89.9) 1093 (73.6) <0.001

<12 408 (4.4) 95 (6.4)

12–24 208 (2.3) 87 (5.9)

>24 105 (1.1) 161 (10.8)

Not reported 209 (2.3) 49 (3.3)

Need for  
vasopressor support

1523 (16.5) 588 (39.6) <0.001

Total packed 
red blood cells 
transfused during 
admission, units, 
mean±SD

0.6±0.2 3.2±0.6 <0.001

Spinal drain

None 7013 (75.8) 952 (64.1) <0.001

Inserted 
preoperatively

2097 (22.7) 454 (30.6)

Inserted 
postoperatively 
(prophylactic)

103 (1.1) 26 (1.8)

Inserted 
postoperatively 
for spinal cord 
ischemia

40 (0.4) 53 (3.6)

Access site 
hematoma

246 (2.7) 81 (5.5) <0.001

Access site  
occlusion

63 (0.7) 24 (1.6) <0.001

Access site infection 18 (0.2) 14 (0.9) <0.001

Myocardial infarction 58 (0.6) 65 (4.4) <0.001

Dysrhythmia 382 (4.1) 248 (16.7) <0.001

Congestive heart 
failure exacerbation

83 (0.9) 66 (4.4) <0.001

Respiratory complication

None 9047 (97.8) 1199 (80.7) <0.001

Pneumonia 74 (0.8) 35 (2.4)

Reintubation 111 (1.2) 196 (13.2)

Both 21 (0.2) 55 (3.7)

Arm ischemia 26 (0.3) 13 (0.9) 0.005

Leg ischemia 92 (1.0) 77 (5.2) <0.001

Leg compartment 
syndrome

42 (0.5) 27 (1.8) <0.001

Bowel ischemia 53 (0.6) 110 (7.4) <0.001

Length of stay in 
intensive care unit, d, 
median (IQR)

1 (0–3) 3 (1–6) <0.001

Total hospital length 
of stay, d, median 
(IQR)

3 (2–6) 6 (3–13) <0.001

 (Continued)

Absence of 1-y 
TALE

Presence of 
1-y TALE

P value(n=9253) (n=1485)

Discharge medications

Acetylsalicylic acid 7805 (84.4) 976 (65.7) <0.001

P2Y12 antagonist 3939 (42.6) 463 (31.2) <0.001

Statin 7396 (79.9) 932 (62.8) <0.001

ACE-I/ARB 3839 (41.5) 414 (27.9) <0.001

β blocker 5963 (64.4) 815 (54.9) <0.001

Anticoagulant 1648 (17.8) 253 (17.0) 0.11

Nonhome discharge 867 (9.4) 706 (47.5) <0.001

Values are reported as n (%) unless otherwise indicated. ACE-I indicates 
angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor 
blocker; IQR, interquartile range; and TALE, thoracoabdominal aortic 
aneurysm life-altering event.
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can increase accuracy and clinical applicability. This 
TEVAR and complex EVAR risk prediction model com-
plements our previously described ML algorithms for 
predicting outcomes following infrarenal EVAR15 and 
open AAA repair.16

Patel et  al performed multivariable logistic regres-
sion to assess risk factors for 1-year TALE following 
TEVAR and complex EVAR.4 They showed that older 
age, female sex, cardiovascular comorbidities, aortic 
diameter, proximal landing zone, and contrast volume 
were independent predictors of poor outcomes fol-
lowing TEVAR and complex EVAR.4 They also demon-
strated that 1-year TALE occurred more frequently 
in patients undergoing arch repairs and extent I to III 
TAAA repairs.4 We showed similar findings, with the 
most important preoperative predictors of 1-year 
TALE in the XGBoost model being proximal landing 

zone, functional status, procedure type (arch repairs 
and extent I–III TAAA repairs), and cardiovascular 
comorbidities.

Explanation of Findings
Several factors explain our findings. First, patients who 
experience complications after TEVAR and complex 
EVAR have multiple risk factors, which is supported 
by existing literature.40 The SVS and European Society 
for Vascular Surgery guidelines emphasize the impor-
tance of thorough perioperative risk assessment and 
preoperative optimization for patients being consid-
ered for aortic interventions.6,7 In particular, there is a 
strong recommendation for smoking cessation at least 
2 weeks before aneurysm repair,6 yet >30% of patients 
in our cohort were current smokers at the time of inter-
vention. Despite having more cardiovascular comor-
bidities, patients who developed 1-year TALE were less 
likely to receive risk reduction medications preopera-
tively and at discharge. Therefore, there are important 
opportunities to improve care for patients being con-
sidered for TEVAR and complex EVAR by understand-
ing their surgical risk and medically optimizing them 
before intervention. Second, anatomic complexity was 
an important risk factor for poor outcomes following 
TEVAR and EVAR. The most important predictor of 
1-year TALE was proximal landing zone. Furthermore, 
patients who underwent arch repairs and extent I to III 
TAAA repairs, had a prior open or endovascular aor-
tic intervention, a larger maximum aortic diameter, or 
a saccular aneurysm, or required branch treatment of 
the great vessels (innominate, left common carotid, or 
left subclavian arteries) were more likely to have com-
plications. These findings may be related to increased 
risk of paralysis from increased aortic coverage from 
extent I to III TAAA repairs,41 stroke from aortic arch 
manipulation from arch repair or branch treatment of 
the great vessels,42 dialysis from increased contrast 
use and procedure time,43 or death from procedural 
complexity and associated complications.44 Given that 
anatomic complexity has a significant impact on out-
comes, it is important for these high-risk patients to be 

Table 4.  Model Performance on Test Set Data for Predicting 1-Year TALE Following Thoracic and Complex Endovascular 
Aortic Aneurysm Repair Using Preoperative Features

AUROC (95% CI) Accuracy (95% CI) Sensitivity Specificity PPV NPV

XGBoost 0.96 (0.95–0.97) 0.89 (0.88–0.90) 0.89 0.89 0.90 0.89

Random forest 0.95 (0.94–0.96) 0.88 (0.87–0.89) 0.89 0.87 0.87 0.89

Naïve Bayes 0.88 (0.87–0.90) 0.84 (0.83–0.85) 0.84 0.83 0.84 0.84

RBF SVM 0.84 (0.83–0.86) 0.76 (0.75–0.78) 0.76 0.77 0.78 0.74

MLP ANN 0.80 (0.78–0.82) 0.73 (0.72–0.74) 0.72 0.75 0.69 0.76

Logistic regression 0.70 (0.68–0.72) 0.64 (0.62–0.65) 0.60 0.72 0.84 0.62

AUROC indicates area under the receiver operating characteristic curve; MLP ANN, multilayer perceptron artificial neural network; NPV, negative predictive 
value; PPV, positive predictive value; RBF SVM, radial basis function support vector machine; and XGBoost, Extreme Gradient Boosting.

Figure 1.  Receiver operating characteristic curve for 
predicting 1-y thoracoabdominal aortic aneurysm life-
altering event following thoracic and complex endovascular 
aortic aneurysm repair using Extreme Gradient Boosting 
models at the pre-, intra-, and postoperative stages.
AUROC indicates area under the receiver operating characteristic 
curve.
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assessed by a multidisciplinary aortic team including 
vascular surgeons, cardiac surgeons, interventional 
radiologists, and other specialists to mitigate adverse 
events.45 Third, our ML models outperformed exist-
ing tools likely due to their ability to model complex, 
nonlinear relationships between inputs and outputs.46 
Traditional logistic regression often struggles with 
these complexities, whereas advanced ML techniques 
excel in capturing intricate patterns often seen in health 
care data.47 In particular, XGBoost offers distinct ad-
vantages including reduced overfitting and faster 
computation while maintaining precision.48–50 Its effec-
tiveness with structured data likely contributed to its 
superior performance compared with more complex 
algorithms like neural networks.51 Fourth, our model’s 
performance remained excellent across various demo-
graphic and clinical subgroups, addressing a common 
issue in ML models whereby bias against underrepre-
sented populations can occur.52 This robustness was 
likely due to the comprehensive capture of sociodemo-
graphic data by VQI, which helped mitigate potential 
biases in model predictions.14

Implications

Our ML models offer several ways to facilitate clini-
cal decision making for patients being considered for 
TEVAR or complex EVAR. Preoperatively, for patients 
identified as high risk, a thorough evaluation of both 
modifiable and nonmodifiable risk factors is crucial.53 
Patients with significant nonmodifiable risks could be 
considered for another interventional approach or sur-
veillance alone with a greater threshold for interven-
tion.54 Specifically, those with anatomically complex 
aneurysms may benefit from multidisciplinary vascular 
assessment by an aortic team to optimize patient se-
lection and procedure planning.45 In contrast, patients 
predicted to be at low risk might be suitable candi-
dates for open surgical repair, which could offer better 
long-term durability.55 Patients with modifiable risks, 
such as cardiovascular comorbidities, may benefit 
from further evaluation and optimization with appro-
priate referrals to medical specialists including cardi-
ologists and internists.56,57 Postoperatively, patients 
flagged as being at high risk for adverse events may be 

Figure 2.  Calibration plots with Brier scores for predicting 1-y thoracoabdominal aortic 
aneurysm life-altering event following thoracic and complex endovascular aortic aneurysm 
repair using Extreme Gradient Boosting models at the (A) preoperative, (B) intraoperative, and (C) 
postoperative stages.
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closely monitored in the intensive care unit to provide 
timely intervention if complications arise.58 Moreover, 
early involvement of allied health professionals can aid 
in optimizing discharge planning with consideration of 
early follow-up.59 Importantly, it is critical to assess and 

potentially modify factors associated with nonhome 
discharge after endovascular interventions to improve 
patient outcomes and quality of life.60 Figure 4 outlines 
a proposed clinical workflow demonstrating how our 
ML tool can support decision making at the pre-, intra-, 
and postoperative stages. By guiding perioperative 
decisions, our tool has the potential to reduce major 
complications and improve patient outcomes following 
TEVAR and complex EVAR.

The programming code for our ML models is pub-
licly available on GitHub, enabling clinicians involved in 
the perioperative management of patients undergoing 
TEVAR and complex EVAR to access and use this tool. 
Our models can be integrated across the >1000 partic-
ipating VQI centers, where the data required for our ML 
algorithms is routinely collected.14 The number of VQI 
centers has significantly expanded from 400 in 2019 to 
>1000 in 2023.14,61 Recently, the VQI recorded >1 mil-
lion procedures.62 This broad and growing network en-
hances the potential utility of our models. Additionally, 
because our predictors are commonly recorded in 
the routine care of patients with complex aortic aneu-
rysms, our models have potential applicability beyond 
VQI sites.63 To effectively deploy these prediction mod-
els in practice, careful consideration of implementation 
science principles is crucial.64 A notable advantage 

Table 5.  XGBoost Performance on Test Set Data for Predicting 1-Year Primary and Secondary Outcomes Following 
Thoracic and Complex Endovascular Aortic Aneurysm Repair at the Pre-, Intra-, and Postoperative Stages

AUROC (95% CI) Accuracy (95% CI) Sensitivity Specificity PPV NPV

TALE (primary outcome)*

Preoperative 0.96 (0.95–0.97) 0.89 (0.88–0.90) 0.89 0.89 0.90 0.89

Intraoperative 0.97 (0.96–0.98) 0.92 (0.91–0.93) 0.92 0.92 0.92 0.92

Postoperative 0.98 (0.97–0.99) 0.94 (0.93–0.95) 0.93 0.94 0.95 0.93

New permanent dialysis

Preoperative 0.95 (0.94–0.96) 0.87 (0.86–0.88) 0.88 0.86 0.87 0.87

Intraoperative 0.96 (0.95–0.97) 0.91 (0.90–0.92) 0.91 0.91 0.91 0.91

Postoperative 0.97 (0.96–0.98) 0.93 (0.92–0.94) 0.93 0.93 0.93 0.93

New permanent paralysis

Preoperative 0.96 (0.95–0.97) 0.91 (0.90–0.92) 0.90 0.92 0.92 0.90

Intraoperative 0.97 (0.96–0.98) 0.93 (0.92–0.94) 0.91 0.94 0.94 0.91

Postoperative 0.98 (0.97–0.99) 0.94 (0.93–0.95) 0.92 0.94 0.94 0.94

Stroke

Preoperative 0.94 (0.93–0.95) 0.87 (0.86–0.88) 0.87 0.87 0.87 0.87

Intraoperative 0.95 (0.94–0.96) 0.90 (0.89–0.91) 0.90 0.89 0.89 0.90

Postoperative 0.97 (0.96–0.98) 0.92 (0.91–0.93) 0.93 0.91 0.91 0.93

Death

Preoperative 0.95 (0.94–0.96) 0.87 (0.86–0.88) 0.89 0.86 0.86 0.89

Intraoperative 0.96 (0.95–0.97) 0.89 (0.88–0.91) 0.90 0.89 0.89 0.90

Postoperative 0.98 (0.97–0.99) 0.93 (0.92–0.94) 0.93 0.92 0.92 0.93

AUROC indicates area under the receiver operating characteristic curve; NPV, negative predictive value; PPV, positive predictive value; TALE, thoracoabdominal 
aortic aneurysm life-altering event; and XGBoost, Extreme Gradient Boosting.

*TALE defined as a composite of new permanent dialysis, new permanent paralysis, stroke, or death.

Figure 3.  Variable importance scores (gain) for the top 10 
predictors of 1-y thoracoabdominal aortic aneurysm life-
altering event following thoracic and complex endovascular 
aortic aneurysm repair in the Extreme Gradient Boosting 
model at the postoperative stage. 
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of our ML models is their capability to provide auto-
mated risk predictions, which enhances their feasibil-
ity in busy clinical settings compared with traditional 

risk predictors that often require manual input.10 
Specifically, our algorithms can automatically extract 
a patient’s VQI data to generate risk predictions. Given 

Figure 4.  Clinical workflow for the use of machine learning algorithms to guide clinical decision-making at the pre-, intra-, 
and postoperative stages for patients being considered for thoracic or complex endovascular aortic aneurysm repair.
High risk defined as a model prediction positive for 1-y TALE. Low risk defined as a model prediction negative for 1-y TALE. The 
cutoffs for categorizing “high risk” and “low risk” were predicted probabilities of developing 1-y TALE of ≥50% and <50%, respectively. 
AUROC indicates area under the receiver operating characteristic curve; and TALE, thoracoabdominal aortic aneurysm life-altering 
event.
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that our goal was to develop a highly accurate model 
that can automatically extract a large number of vari-
ables from VQI to make risk predictions, we opted not 
to reduce the number of input features through fea-
ture selection. For successful implementation, we rec-
ommend establishing and supporting data analytics 
teams at the institutional level. These teams can play a 
vital role in facilitating the deployment of our ML mod-
els and improving patient care.65

Limitations
Our study has several limitations. First, the models 
were developed using data from the VQI, a voluntary 
registry that predominantly includes information from 
North American centers. Lack of external validation 
is an important limitation, although this can be partly 
mitigated with a robust cross-validation strategy and 
clear separation of training and testing data to ensure 
that all model evaluations are performed on unseen 
data. Since test set data were used to compare the 
models, the optimal ML approach cannot be fully elu-
cidated with the current analysis. Validation of the rela-
tive performance of the ML models in an external data 
set is warranted. With the development of the Vascular 
Verification Program through a partnership between 
the SVS and the American College of Surgeons, there 
may be opportunities to validate SVS VQI-derived 
models on American College of Surgeons National 
Surgical Quality Improvement Program data in the fu-
ture.66 Further research is needed to determine if these 
models can be generalized to settings outside of VQI 
institutions. Second, while we evaluated 6 different ML 
models on the basis of their established efficacy in 
predicting postoperative outcomes, other ML models 
could potentially offer different insights.20 Although our 
chosen models performed well, it would be prudent to 
continuously explore and assess new ML techniques. 
Third, our models are limited to patients undergoing 
elective TEVAR and complex EVAR for aortic aneu-
rysms. Emergent interventions for trauma and rup-
tured/symptomatic aneurysms were excluded given 
that these interventions are often indicated without the 
need for a risk prediction tool. Furthermore, treatment 
for nonaneurysmal pathologies including dissection, 
penetrating aortic ulcer, intramural hematoma, and 
aortic thrombus were excluded to reduce heteroge-
neity of our patient population. Future development of 
risk prediction tools for TEVAR and complex EVAR in 
nonaneurysmal pathologies may provide further guid-
ance for these interventions.

CONCLUSIONS
We used a comprehensive vascular-specific clinical 
registry (VQI) to develop robust ML models that predict 

1-year TALE following elective TEVAR and complex 
EVAR for noninfrarenal aortic aneurysms with excellent 
performance (AUROCs >0.90). Our models can be ap-
plied across the pre-, intra-, and postoperative stages 
to guide clinical decision making regarding strategies 
to mitigate the risk of major complications and improve 
outcomes. Importantly, these models demonstrated 
robustness across diverse demographic/clinical sub-
populations and outperformed existing prediction tools 
and logistic regression, and therefore, have potential 
for important utility in the care of patients with nonin-
frarenal AAAs. Future prospective validation of our ML 
algorithms is needed to further establish their clinical 
utility.
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